Information on diagnostics

Electrical motor vehicle signals

Increasing importance of the oscilloscope

An ever-increasing number of vehicle components communicate using clocked signals.
What is the difference between PWM (pulse width modulation) and PFM (pulse frequency modulation) signals?
Can clocked signals be measured with a multimeter?

Analogue signals can be measured with any commercially available multimeter. Synchronised signals require the use of an oscilloscope or the appropriate function on an engine tester.

In automotive technology, increasing use is being made of signals that consist of a regularly synchronised voltage. Multimeters only show the average voltage over a period.

Pulse width modulation (PWM)

  • The frequency is constant.
  • The pulse duty factor, i.e. the width of the pulses, varies.

Pulse width modulation may be used as a signal input factor or for the power control system, e.g. for EGR valves, throttle valves, electro-pneumatic valves, idling actuators or for demand-controlled fuel pumps.

Pulse frequency modulation (PFM)

  • The frequency varies, i.e. the signal curves are compressed or elongated.
  • The pulse duty factor is constant.

On some Pierburg air mass sensors the output factors may be output as PFM signals.

Synchronised signals on the oscilloscope screen

Parameters:

  1. Voltage U, in volts
  2. Pulse or ON time
  3. OFF time
  4. Period duration T
  5. Time axis, in seconds
  6. The frequency is inverse of the period duration: f = 1/T
  7. “Pulse duty factor”

The term “pulse duty factor” is not always defi ned in the same way. Generally speaking it is understood to mean the relationship of ON time (2) to period duration (4).
The pulse duty factor is shown as a number between 0 and 1 or a percentage value between 0% and 100%.
Some oscilloscopes, as in the example here, show the pulse duty factor “upside”, in other words the OFF time (3) in relation to the period duration (4).

 

Synchronised signals are relatively insensitive to faults. Faults in the signal fl ow, for example due to corrosion or moisture in the plug-in connections, may cause the voltage level (8) to vary. This does not aff ect the actual “pulse duty factor” or “frequency” data.

In automotive technology frequencies of 100 Hz are usual. This is equivalent to 100 periods per second. Signal forms with these high frequencies can only be displayed on an oscilloscope.

Use of cookies and data protection

Motorservice Group uses cookies saved to your device in order to optimize and continuously improve its websites, as well as for statistical purposes. Further information on our use of cookies can be found here, together with our publication details and data protection notice.

By clicking on “OK” you confirm that you have taken note of the information on cookies, the data protection declaration and the publication details. You can also change your cookie settings for this website at any time.

Privacy settings

We place great importance on transparent information relating to all aspects of data protection. Our website contains detailed information on the settings you can select and what effect these settings have. You can change your selected settings at any time. Regardless of the selection you choose, we will not draw any conclusions regarding you as a person (except where you have explicitly entered your details). For information on deleting the cookies, please see the help function in your browser. You can find out more in the data protection declaration.

Change your privacy settings by clicking on the corresponding buttons

Necessary

Cookies essential for the system ensure that the website works correctly. Without these cookies, malfunctions or error messages may occur.

This website will:

  • Store cookies required by the system
  • Store the settings you make on this website

This site wil never do the following without your agreement:

  • Store your settings, such as the language selection or cookie banner, so that you do not have to repeat them in the future.
  • Evaluate visits anonymously and draw conclusions to help us to optimize our website.
  • Draw conclusions regarding you as a person (except where you have explicitly entered your details, e.g. in contact forms)

Convenience

These cookies make the website easier to use and save settings, for example, so that you do not have to repeat them every time you visit the site.

This website will:

  • Store cookies required by the system
  • Store your settings, such as the language selection or cookie banner, so that you do not have to repeat them in the future.

This site wil never do the following without your agreement:

  • Evaluate visits anonymously and draw conclusions to help us to optimize our website.
  • Draw conclusions regarding you as a person (except where you have explicitly entered your details, e.g. in contact forms)

Statistics

Statistics cookies enable us to evaluate the usage behaviour on the website anonymously – without enabling any conclusions to be drawn about you as a person. This enables us to measure the performance of the website and to improve it continuously to offer a better user experience.

This website will:

  • Store cookies required by the system
  • Draw conclusions regarding you as a person (except where you have explicitly entered your details, e.g. in contact forms)
  • Evaluate visits anonymously and draw conclusions to help us to optimize our website.

This site wil never do the following without your agreement:

  • Draw conclusions regarding you as a person (except where you have explicitly entered your details, e.g. in contact forms)

Of course, we will always respect the do-not-track (DNT) setting in your browser. In this case, no tracking cookies are set and no tracking functions are loaded.